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Baltimore, MD 21218 USA 
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Abstract. We give a rigorous proof that infinite AB percolation does nor occur for any 
parameter value in a certain class of bipartite planar graphs. In particular, infinite AB 
percolation cannot occur on the square lattice. 

1. Introduction 

We consider a variant of the percolation model which is motivated by chemical bonding 
considerations. In this model, there are two types of atoms, A and B, which occupy 
the sites of an infinite lattice graph G, with probabilities p and 1 - p ,  respectively. 
Unlike atoms which are connected by an edge of G are bonded together, while like 
atoms which are connected do not bond. The object of study is the size (and other 
characteristics) of the clusters of atoms bonded together. In particular, one wishes to 
determine whether infinite bonded clusters exist for some parameter values, or if all 
bonded clusters are finite for all values of p E [0, 11. 

The model has been studied previously by Halley (1983), who named it ‘AB 
percolation’, and by SevSek et a1 (1983), who called it ‘antipercolation’. Halley gave 
a plausibility argument to show that all bonded clusters are finite for all values of 
p E [0,1] if the underlying graph G is bipartite and has a site percolation critical 
probability strictly greater than f. The argument is not a mathematically rigorous 
proof, however. We provide a proof that all bonded clusters are finite on a large class 
of bipartite graphs and describe a variety of graphs included in this class. In addition, 
by a different argument, we show that there are no infinite bonded clusters on the 
square lattice for any value of p .  This result relies on a special relationship with the 
asymmetric bond percolation model on the square lattice. The square lattice is bipartite, 
and its site percolation critical probability is strictly greater than (Toth 1985), but 
our previously mentioned result does not apply. 

In fact, it has not been rigorously proven that infinite AB percolation clusters exist 
with positive probability for some value of p on any infinite two-dimensional lattice. 
Monte Carlo evidence (Mai and Halley 1980) suggests that infinite clusters occur for 
p E [0.2145,0.7855] on the triangular lattice. We provide a rigorous proof that infinite 
AB clusters exist for an interval of values of p on the triangular lattice in the following 
paper (Wierman and Appel 1987). 

Definitions and notation are provided in 0 2. Fundamental results from classical 
percolation are described in § 3. Halley’s plausibility argument, and our rigorous proof 
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for a class of graphs, appears in § 4. Examples are discussed in 0 5 .  The result for 
the square lattice is proved in 9 6 .  

2. Definitions 

A graph G consists of a countable set V ( G )  of vertices and a countable set E ( G )  of 
pairs of vertices, called edges. A graph G is bipartite if there exists a partition of 
V ( G )  into two sets V, and V2 such that every edge in E ( G )  has one endpoint in V, 
and one endpoint in V,. The sets V, and V2 are called a bipartition. Note that any 
path on a bipartite graph passes through vertices of V, and V, alternately. 

An assignment of a label, A or B, to each vertex of G is a configuration on 
G, i.e. a configuration is an element w E {A, B}v'G', or equivalently a function 
w :  V (  G) -$ {A, B}. The AB percolation model on G is a probability model with sample 
space {A, B}V'G' and probability measure Pp such that the labels of the vertices of G 
are independent random variables with probability p of labelling each vertex A. 

An edge of G is an AB bond if the endpoints of the edge have different labels. An 
AB path is an alternating sequence of vertices and edges uo,  e , ,  U,, . . . , e,, U, such that 
ei, 1 S i s  n, are all AB bonds. The AB cluster containing a vertex U, denoted W:'", is 
the set of all vertices which may be reached from U through an AB path. The number 
of vertices in W:'" is denoted by # W:'". 

Define the AB percolation probability by 
e:'"( p )  = pP( +I wtB = +CO). 

Note that AB paths and AB clusters are unchanged if the label of every vertex 
is changed, but the parameter of the model is changed from p to l -p .  Thus, 
OtB(p) = et"(1 - p )  for all p E [0, 13, so the AB percolation probability function is 
symmetric about i. 

While the value of e tB(p)  may depend on the vertex U, the set of values of p for 
which e:'"( p )  > 0 is independent of the choice of vertex if G is a connected graph, as 
for classical percolation models. Intuitively, one expects that e:'"( p)  > 0 only on a 
single interval, but it has not been proven that there cannot be multiple intervals. 

3. Classical percolation results 

We will rely on results of Kesten (1982) for the classical site percolation model, which 
will be stated after the following definitions. 

A graph G is periodic in W' if 
(a)  G is embeddable in IW" so that the vertex and edge sets are invariant under 

(b) there exists a finite z so that the maximum degree of the vertices of G is z ;  
(c) every compact set of [W" intersects only finitely many edges of G ;  
(d) G is connected. 

translation by a set of basis vectors for R"; 

Most of the lattices commonly used in statistical physics, such as the square lattice, 
correspond to periodic graphs, but self-similar and tree-like pseudolattices are excluded. 

A mosaic M is a graph embedded on R2 which has finite maximum degree such that 
( i )  any two edges of M intersect only at endpoints, 
( i i )  each component of R2\M is bounded by a Jordan curve consisting of a finite 

number of edges of M. 
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To a great extent, (i) excludes two-dimensional lattices which have other than 
nearest-neighbour connections. A mosaic M is a planar graph, and each component 
of R2\M is called a face of M. If F is a face of M ,  close-packing F means adding an 
edge between any pair of vertices on the perimeter of F which are not yet adjacent. 
If M is a mosaic and 9 a subset of its faces, the matching pair (%, %*) of graphs based 
on ( M ,  9) is the following pair: 9 is constructed from M by close packing all faces 
of 9. 9* is constructed from M by close packing all faces not in 9. 

Kesten’s fundamental result states that if G and G* are a matching pair of periodic 
graphs in R2 with at least one axis of symmetry, then the sum of the site percolation 
critical probabilities of G and G* is one. In addition, for both G and G*, the 
probability of an infinite open cluster is zero at the critical probability. One consequence 
is that the critical probability of any fully triangulated planar periodic graph with one 
axis of symmetry is 4, since the graph is self-matching. 

4. Results for bipartite graphs 

Halley (1983) proved the following result by a symmetry argument when p = f .  

Lemma 4.1. If G is a bipartite graph with site percolation critical probability strictly 
greater than f, then etB((f)  = 0. 

The result is obtained by reversing the labels on one set of the bipartition of G, 
converting the AB problem into a classical site problem and noting that at p = f the 
probabilities of infinite A, B and AB clusters are all equal, and thus are equal to zero. 

Using this result, Halley states that it follows that the probability of an infinite AB 
cluster is zero for all values of p in such lattices, based on a claim that ‘the probability 
of an infinite AB cluster is clearly largest at p =+.’ While the claim is intuitive, no 
proof is offered and we have not been able to construct a rigorous proof for it. 

We next offer a partial confirmation of Halley’s statement on the absence of infinite 
AB clusters. Let G be a bipartite graph with bipartition sets VI and V , .  For each V, ,  
construct a graph G( V , )  with vertex set V,, such that vertices U and U are adjacent in 
G( V I )  if and only if U and U are adjacent to a common vertex in G. Let p ,  and p 2  
denote the site percolation critical probabilities of G( V , )  and G( V,) respectively. 

Theorem 4.2. If G is a bipartite graph such that 
(a )  PI+P2> 1, or 
(b) G( VI)  and G( V,) are each a member of a matching pair of graphs, periodic, 

and have one axis of symmetry, and p ,  + p 2  = 1, 
then e t B  = 0 for all U E V (  G)  for all p E [0, 11. 

Prooj If there exists an infinite AB cluster in G, then there is an infinite A cluster in 
one G( V,) and an infinite B cluster in the other G( V , ) .  Let A,(B,) denote the event 
that there is an infinite A (B, respectively) cluster in G( V I ) .  Then, for any U, 

@ f B ( p ) S  P p [ ( A i n B , ) u ( A , n B I ) l  

P,[(AinB,)+P,[A2nB,I. 
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In case (a),  note that for A, to occur with positive probability, p 5 p I ,  which implies 
that 1 - p  s 1 - p i  < p 2  by hypothesis, so B2 has probability zero. Hence P,,[A, n B,] = 0 
for all p ,  and similarly P,[A2 n B,] = 0 for all p .  Thus, O f B  = 0 for all p E [0, 11. In case 
(b), for AI to occur with positive probability, by Kesten’s results described in 0 3, 
p > p l ,  which implies that 1 - p  < p 2 ,  and the argument is completed as before. 

5. Examples 

Example 1. Let G be any periodic bipartite mosaic with one axis of symmetry and 
with maximum degree three. Two vertices in V, are adjacent in G (  V,) if and only if 
they are on the boundary of a common face, since the vertex of G adjacent to both 
has degree at most 3 and thus lies on the boundary of at most three faces. The 
corresponding edge in G (  V,) can be represented as a line segment in the common face 
of G. Then G( V,) is a planar graph if the edges in each face of G do not intersect. 
However, each face of G is bounded by an even number of edges, since G is bipartite, 
so each face contains either a single edge of G (  V,) or a circuit of edges of G (  V,). In 
either case, no edges of G (  V,) intersect, so G( V,) is planar. Thus, each G( V,) is a 
periodic mosaic with one axis of symmetry, satisfying the conditions in theorem 4.2(b). 
Each graph G (  V,) has a site percolation critical probability p ,  z;, since by adding 
edges periodically it may be made fully triangulated. Applying theorem 4.2, with 
probability one there are no infinite AB clusters in G for any p E [0, 11. 

A special case of this fact is the hexagonal lattice. In this case, G (  V,) are both 
triangular lattices, so p 1  + p 2  =$+$ = 1, so (b) applies but (a) does not. 

Any graph G, obtained from a periodic mosaic M with one axis of symmetry and 
maximum degree 3 by placing (periodically) an odd number of additional vertices on 
each edge of M, is bipartite and still has maximum degree three, so the above fact 
applies. 

Example 2. Consider the graph G obtained by placing an additional vertex on each 
edge of the square lattice. G is a periodic bipartite mosaic with two axes of symmetry, 
but has maximum degree 4. However, the G (  V,) are the square lattice and the covering 
graph of the square lattice, so the sum of the site percolation critical probabilities is 
strictly greater than one. Theorem 4.2(b) shows that there is no AB percolation on G 
for any p E [0,1]. 

Example 3.’  Let G be the square lattice, which is a periodic bipartite mosaic with two 
axes of symmetry, but has maximum degree 4. Each G (  V,) is the matching graph of 
the square lattice, i.e. a square lattice in which every face has been close packed. In 
this case, it is known that p , < $ ,  so p l + p z <  1 and theorem 4.2 does not apply. 
Nevertheless, infinite AB percolation is impossible on the square lattice, as will be 
shown in the following section. 

6. AB percolation on the square lattice 

For our study of the square lattice, we use the usual embedding in the plane with 
vertex set {U =(u( l ) ,  u ( 2 ) ) e Z 2 } ,  and with an edge between U and w if and only if 
11 U -  w 11 = [ ( u ( l ) -  w(l)) ,+(u(2)-  ~ ( 2 ) ) ~ ] ” ~ =  1. The square lattice is bipartite, with 
bipartition Vl={ue  V(G): u( l ) -u(2) isodd}and V 2 = { u e  V(G): o(l)-u(2)iseven}. 
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Recalling Halley’s proof of lemma 4.1, reverse the labels of all vertices in V,, and 
view the result as a classical percolation model in which vertices in V, are labelled A 
with probability p and vertices in V, are labelled A with probability 1 - p .  Reversing 
the labels transforms an  AB cluster in the original model into either an  A cluster or  a 
B cluster in the new model. 

We now use a connection with the asymmetric bond percolation model on the 
square lattice to demonstrate that infinite A clusters (and infinite B clusters, by 
symmetry) cannot exist with positive probability for any value of p E [0, 11 in the new 
model. In the asymmetric bond percolation model on the square lattice, each horizontal 
edge is open with probability p and each vertical edge is open with probability q. 
Kesten (1982) proved that the critical surface is p + q = 1, so that if p + q < 1, or p + q = 1 
with O < p  < 1, then with probability one there is no infinite open cluster. 

By the bond-to-site transformation, the asymmetric bond percolation model is 
equivalent to a site percolation model on the covering graph of the square lattice in 
which sites are open with probability p or  q. Thus, in this model, there are no infinite 
open clusters if p + q < 1, or  p + q = 1 with 0 < p < 1. (Infinite open clusters exist when 
p = 0, q = 1 and  p = 1, q = 0.) 

Removing the close-packing edges from the covering graph of the square lattice 
cannot increase the probability of an  infinite open cluster, and  produces a site percola- 
tion model on the square lattice with each vertex in one bipartition set open with 
probability p and each vertex in the other bipartition set open with probability q. Thus 
there is no infinite percolation if p + q G 1. (When p + q = 1 in this model, no infinite 
open cluster is present when p = 0 or 1.) Since the transformation of the AB percolation 
model is equivalent to this model with p + q = 1, there are no infinite A clusters (and 
no infinite B clusters) for any value of p E [0,1]. Consequently there are no infinite 
AB clusters on the square lattice for any value of p E [0, 13. 
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